On invariant von Neumann subalgebras rigidity property

نویسندگان

چکیده

We say that a countable discrete group Γ satisfies the invariant von Neumann subalgebras rigidity (ISR) property if every Γ- subalgebra M in L(Γ) is of form L(Λ) for some normal subgroup Λ◁Γ. show many “negatively curved” groups, including all torsion free non-amenable hyperbolic groups and with positive first L2-Betti number under mild assumption, certain finite direct product them have this property. also discuss whether torsion-free assumption can be relaxed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-rigidity in von Neumann algebras

We introduce the notion of L2-rigidity for von Neumann algebras, a generalization of property (T) which can be viewed as an analogue for the vanishing of 1-cohomology into the left regular representation of a group. We show that L2-rigidity passes to normalizers and is satisfied by nonamenable II1 factors which are non-prime, have property Γ , or are weakly rigid. As a consequence we obtain tha...

متن کامل

L 2 -rigidity in von Neumann algebras

We introduce the notion of L2-rigidity for von Neumann algebras, a generalization of property (T) which can be viewed as an analogue for the vanishing of 1-cohomology into the left regular representation of a group. We show that L2rigidity passes to normalizers and is satisfied by nonamenable II1 factors which are non-prime, have property Γ, or are weakly rigid. As a consequence we obtain that ...

متن کامل

A Note on Rigidity for Crossed Product Von Neumann Algebras

In this note, we will point out, as a corollary of Popa’s rigidity theory, that the crossed product von Neumann algebras for Bernoulli shifts cannot have relative property T. This is an operator algebra analogue of the theorem shown by Neuhauser and Cherix-Martin-Valette for discrete groups. Our proof is different from that for groups.

متن کامل

Applications of deformation rigidity theory in Von Neumann algebras

This work contains some structural results for von Neumann algebras arising from measure preserving actions by direct products of groups on probability spaces. The technology and the methods we use are a continuation of those used by Chifan and Sinclair in [Ionut Chifan and Thomas Sinclair. On the structural theory of II1 factors of negatively curved groups, ArXiv e-prints, March 2011]. By empl...

متن کامل

Deformation and rigidity for group actions and von Neumann algebras

We present some recent rigidity results for von Neumann algebras (II1 factors) and equivalence relations arising from measure preserving actions of groups on probability spaces which satisfy a combination of deformation and rigidity properties. This includes strong rigidity results for factors with calculation of their fundamental group and cocycle superrigidity for actions with applications to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2022.109804